Multiple Bit Upsets and Error Mitigation in Ultra Deep Submicron SRAMs

NSREC 2008
17 July 2008

D.G.Mavis¹, P.H.Eaton¹, M.D.Sibley¹, R.C.Lacoe², E.J.Smith¹, and K.A.Avery¹

¹Micro-RDC
8102 Menaul Blvd. NE, Suites C&D
Albuquerque, NM 87110-4649

²The Aerospace Corporation
P.O. Box 92957, M2-244
Los Angeles, CA 90009-2957
Outline

- SRAM test coupon
- Test and analysis procedures
- SRAM scrubbing investigations
- Conclusions
SRAM Test Structure Architecture

- 8k x 8 EDAC protected stand alone memory
 - 12-8kx1 bit blocks
 - 8 blocks data
 - 4 blocks check bits
 - Addressed as 8k x 8 architecture
 - 13 address bits
 - 8 data bits in, 12 data bits out
 - Block separation ≥ 100 μm

- Five variations designed and fabricated in a bulk 90-nm CMOS process
SEU Testing

New Methodology

- Normally incident heavy ions
- Physical checkerboard
- EDAC off
 - Memory polled and scrubbed every 5.6 ms
- At each poll, record:
 - Error address
 - Data written to memory
 - Data read from memory
 - Time stamp when error occurred
- Post process log file
 - Map errors to physical layout
 - Identify multi-cell upsets
 - Categorize type of upset

Traditional SEU Results
Extended SEU Analysis Approach

Example graphical representation of SEU testing results

Reverse-biased drain-to-well in bit cell (sensitive to SEU)

Transistor pair struck corresponding to SEU error
New Results Show Errors Dominated by MCUs

- Single-cell upsets: 18%
- Multi-cell upsets: 82%
- All MCUs caused by single particle strikes
 - Probability of 2 bits upsetting from 2 different particles strikes ~ 2×10^{-6}
PMOS SEU Sensitivity

- PMOS nodes the most sensitive in dense SRAM
 - Consistent with turn-on of PNP parasitic bipolar devices within a common n-well
- SRAM with increased critical node spacing shows reduced error rates
 - Consistent with lack of observed MCUs in older technologies
Scrubbing Rate Relation

For

- R_b as the SEU errors/bit-day error rate (the inherent SRAM error rate with no EDAC and no scrubbing),
- R_{be} as the desired effective errors/bit-day error rate (the effective error rate achievable after EDAC and scrubbing), and
- N as the number of memory words, L as the data word length, and P the number of parity bits needed for EDAC, then

$$R_{mbu} = \frac{1}{2} \cdot T_{scrub} \cdot N \cdot (L + P)^2 \cdot R_b^2$$

$$R_{mbu} = N \cdot L \cdot R_{be}$$

Which means, the scrubbing rate T_{scrub} necessary to achieve a given error rate R_b is given by:

$$T_{scrub} = 2 \cdot \frac{R_{be}}{R_b^2} \cdot \frac{L}{(L + P)^2}$$
Experimental Verification

- Scrubbing fundamental equations experimentally verified
 - Vary beam flux and measure at two different SEU rates
 - Vary time between scrubs and compare normalized results to expected

From:

\[R_{mbu} = \frac{1}{2} \cdot T_{scrub} \cdot N \cdot (L + P)^2 \cdot R_b^2 \]

With:

\[R_{dev} = N \cdot (L + P) \cdot R_b \]

Predicted error rate:

\[R_{mbu} = T_{scrub} \cdot R_{dev}^2 / (2 \cdot N) \]
MCUs in Realistic Heavy-Ion Environment

- Step angle of incidence
- Measure separation of each MCU
- Least-squares fit provides MCU integration over solid angle
- Width *NOT* necessarily related to angle subtended between nodes

- 90° incident heavy ions
- Ne ion in the LBL 16A MeV cocktail
- Range ~240 µm
Efficacy of Scrubbing

- Compare the MCU integrated error rates to the $2\pi \cdot$ SCU rate
 - Crème predicts SEU rates $\sim 10^{-8}$ errors/bit-day
 - 10^4 MBU rate reduction at $\sim 100 \, \mu$m separation
 - Pointless to scrub to better than 10^{-12} errors/bit-day

- Given a 32 Mbit SRAM
 - $N = 1 \, M$ Words
 - $L = 32$ bits
 - $P = 6$ bits

- Desired T_{scrub}
 - 443 days (in Geo-synchronous orbit)
 - 2.8 hours (for worst case proton orbit)
Conclusions

- Nano-Scale CMOS SRAMs ➔ Show an increased MCU sensitivity
 - Ionization track can directly intercept multiple bit cells
 - Diffusion charge easily shared between multiple bit cells
 - Parasitic bipolar effects enhance upsets of multiple bit cells sharing a common n-well

- Simple EDAC with scrubbing can be effective for error mitigation
 - Bit cell separation within a word should be > 100 µm
 - Satisfied by a block based architecture of 6T cell designs
 - Resulting scrubbing rates acceptable for even large SRAMs